
The NAS Parallel Benchmarks 2.1 Results

William Saphir *Alex Woo tand Maurice Yarrow

npb@nas.nasa.gov

Report NAS-96-010, August, 1996

Abstract

We present performance results for version 2.1 of the NAS Parallel Bench-

marks (NPB) on the following architectures:

• IBM SP2/66 MHz

• SGI Power Challenge Array/90 MHz

• Cray Research T3D

• Intel Paragon

"MILl, Inc. This work is supported through NASA Contract NAS 2-14303.

tNASA Ames Research Center, Moffett Field, CA, 94035-1000.

tSterling Software, Palo Alto, CA. This work is supported through NASA Contract

NAS 2-13210.

Contents

1 Introduction 4

2 Methodology 5

3 Applicability and usefulness of the results
3.1 Vector vs. Cache architectures

3.2 Mflop/s rates

3.3 Comparison with NPB 1 results

3.4 Comparing different configurations of the same type of com-

puter
3.5 Relevance for other codes

6

6

7

7

Machines 9

4.1 NAS IBM SP2 9

4.2 NAS SGI Power challenge array 10

4.3 Wright Laboratory Intel Paragon 11
4.4 JPL CRAY T3D 12

Code Descriptions 13

5.1 Application Benchmark: LU 13

5.2 Application Benchmark: SP and BT 14
5.3 Kernel Benchmark: MG 15

6 Results

6.1

6.2

6.3

6.4

6.5

6.6

6.7

15

Performance per processor 16

Total performance 18

Efficiency 19

Performance as a function of problem size 20

Differences in performance of different codes 21

Comparison of NPB 2 and NPB 1 performance 22
Discussion of clustered-SMP issues 24

7 Analysis/Conclusions 25

List of Figures

1 Per-processor Performance 16
2 Total Machine Performance 18

MachineEfficiency 19
Performanceof threeclassesof LU on theT3D 20
Performanceof all ClassA codeson the SP2 21
Ratioof NPB 2 to NPB 1run time 22

1 Introduction

The NAS Parallel Benchmarks (NPBs) [1, 2] are a widely-recognized suite

of benchmarks originally designed to compare the performance of highly

parallel computers with that of traditional supercomputers. The NPBs are

specified algorithmically, and are implemented mainly by computer vendors,

using techniques and optimizations appropriate to their specific computers.

Performance results based on these optimized proprietary implementations

are submitted to NAS by vendors and are reported in a periodic NAS Techni-

cal Report [4]. The vendor-optimized NPB implementations will be referred
to as NPB 1.

In late 1995, NAS announced NPB 2[3], a set of specific NPB implementa-

tions, based on Fortran 77 and MPI[5]. NPB 2 implementations are intended

to be run with little or no tuning, in contrast to NPB 1 implementations,

which have been highly optimized by vendors for specific architectures. NPB

2 implementations are designed for computers with hierarchical cache-based
memories.

Unlike that of proprietary NPB 1 implementations, the source of NPB 2

implementations is freely available. One advantage of this is that anyone

can run them on any machine, allowing collection of data on a much wider

variety of machines and configurations. Another is that the techniques used

in NPB 2 implementations can be studied for possible use in other codes.

Because they have not been optimized by vendors, NPB 2 implementations

approximate the performance a typical user can expect for a portable paral-

lel program on a distributed memory parallel computer. Together the results

presented here provide a well-calibrated comparison of the real-world per-

formance of several parallel computers. Furthermore, by comparing NPB

2 results to NPB 1 results, we can draw conclusions about how easy it is

to obtain high performance on these systems. NPB 2 results complement,

rather than replace, NPB 1 results.

NPB 2.1, upon which the results in this paper are based, was released in

February, 1996. It contains implementations of 5 of 8 of the original NAS

benchmarks - the three pseudo-applications LU, SP and BT, and the kernels
MG and FT. NPB 2.2 will include the remaining benchmarks - CG, IS and

EP - as well as a revised FT, which was found to have some scalability and

performanceproblems.Thispaperthereforeincludesresultsfor LU, SP,BT
andMG only.A futurepaperwill containresultsfor all 8benchmarks.

This paperalsoincludesthe first resultsfor the NPB class"C" sizesthat
werefirst describedin the NPB 2.0report.

2 Methodology

NPB 2 presents a number of challenges and opportunities that were not

present in NPB 1. NPB 1 implementations represent a best case scenario:

they are implemented and carefully optimized by vendors (and the codes

remain proprietary); they are run by vendors in ideal conditions in clean en-

vironments with the latest software. NPB 1 results are meaningful and can

be compared because every vendor has had equal opportunity to optimize,

and because the pencil-and-paper nature of the benchmarks eliminates ar-
chitectural bias. NPB 1 results, while far more meaningful than the "not to

be exceeded" peak performance and LINPACK[6] rates, generally represent

upper limits on what can be achieved for the type of calculations performed

by the NPBs.

In contrast, NPB 2 implementations are run essentially "out of the box"

with no tuning 1. Because the NPB 2 codes are not proprietary, and source

is readily available and easy to build, anyone can generate NPB 2 results.
The environment in which the benchmarks are run may not include the latest

software and hardware, may not include all the special tuning tricks known

to vendors, and may not be as clean as that used by vendors. As with any

scientific measurement, benchmark results are useless unless reproducible.

Therefore great care must be taken to document the specific conditions
under which measurements were made - compiler options, MPI and compiler

versions, system software version, etc.

In this report, section 6 describes the environment in which the measure-
ments were taken. The conditions were the best available to NAS when the

measurements were made. While the environment description may make

the results more difficult to understand (especially when there are several

sets of results for the same "machine" with slightly different configurations),

1NPB 2 permits two levels of tuning: 0% code modification and 5% code modification.
This report contains results only for the 0% case

dataqualifiedin this waycanprovideawell-calibratedmeasurementof the
effectof smallhardwareand softwarechanges- showingthe improvement
or regressionof systemperformanceovertime.

All NPB 2 implementationsdiscussedin this paperrun a singlesolveriter-
ation and resetthe initial conditionsbeforestarting the the timedportion
of the benchmark.This procedureeliminatesstartup time overheadthat
canseverelyskewresultsfor short-runningbenchmarks.It alsomeansthat
Mflop/s ratesreportedby the codewill not be the sameasMflop/s rates
reportedby a hardwareinstructioncounter.Caremustbe takento recon-
ciledirectly-measuredoperationcountswith theratesreportedby thecodes
themselves.The measurementscanbereconciledby directly measuringthe
operationcountof zero-iterationrun andsubtractingthis from the opera-
tion countof a completerun. The time reportedby the benchmarksand
in this report is wallclocktime. CPUtime haslittle meaningin a tightly-
coupledparallelprogramwheretime spentblockingfor messagesmaynot
be countedasCPUtime.

3 Applicability and usefulness of the results

3.1 Vector vs. Cache architectures

In this paper we report results only for machines based on RISC proces-

sors with cache-based memory hierarchies. While Fortran and MPI provide

compile-and-run portability, it is much more difficult to obtain architectural

portability, that is, to design a code that can run efficiently on both vector

and RISC/cache architectures. In many cases, the requirements for a vector

code (long vector length) directly conflict with those for a cache code (cache

reuse). In some cases, it is possible to write a code that runs well on both,

particularly when vendor-optimized libraries can be used. The NPBs do not
use such libraries.

NPB 2 implementations are written specifically for cache-based architec-

tures, and assume a fully distributed memory model, with communication

only through MPI. While the codes can be run on a vector machine, such

as a Cray J90, the results cannot be meaningfully compared with other re-

suits, except to point out the fact that compile-and-run portability does not

necessarily mean architectural portability.

In this reportwecompareresultsfrom four machines.Threeof these - the

IBM SP2, Cray T3D, and Intel Paragon with GP nodes - have completely

distributed memory. One - the SGI Power Challenge Array - is composed
of SMP nodes.

A few types of machines, including traditional networks of workstations, are

not represented here but will be included in future reports.

3.2 Mflop/s rates

A new feature of NPB 2 is that we report results in Mflop/s (million floating

point operations per second) as well as run time. The Mflop/s measure

has little meaning for NPB 1, since different implementations may have

substantially different operation counts. Since NPB 2 results are based

on unmodified code (0% case), the operation count is approximately the

same on any machine. Good optimizing compilers may be able to eliminate

some operations, and others may add operations for certain reasons, so the

reported Mfiop/s rate may not be exactly what would be reported by a
hardware instruction counter, but in our experience it is usually quite close

(within a few percent).

The nominal rate is based on a combination of hand counting, hardware

instruction counting (originally on Cray machines, more recently verified

on an SP2) and extrapolation. The nominal floating point count does not

change with number of processors - only with problem size - so any extra

operations performed because of parallelization are not counted.

3.3 Comparison with NPB 1 results

In all cases, we compare NPB 2 results with NPB 1 results for the "same"

machine. While this comparison is interesting, we do not want to overstate

its significance. Roughly, the comparison shows the difference between what

an "ordinary programmer" can achieve on a portable program and what

an expert or unusually careful non-expert can achieve on an architecture-

optimized program. If NPB 1 and NPB 2 timings are quite close, one might

conclude that it is relatively easy to get "peak" (where peak means NPB-

1 level) performance out of a particular machine. Different machines have

substantially different results for this metric.

3.4 Comparing different configurations of the same type of

computer

While the NPB suite was originally designed to compare different types of

computers, it can also be used to probe certain minor differences within a

single type of computer. For instance, the effect of using different compiler

flags, different versions of the MPI library, and even different compilers (e.g.,

Fortran 90 vs. Fortran 77) can be measured. In this report, we use the NPB

suite to explore different configurations of an SGI Power Challenge cluster,

where a given number of processes may be distributed across nodes in many

different ways.

3.5 Relevance for other codes

The NPB suite is based on computational fluid dynamics (CFD) codes typi-

cal of those run on the supercomputers at the NAS facility. We believe that

the NPB 2 results are relevant to "the average user, with an average code,"

with a few caveats.

First, the NPB 2 implementations do not use numerical libraries. Codes

that use vendor-optimized numerical libraries may obtain substantially bet-

ter performance. Some library routines that could be useful for NPB imple-
mentations are FFT routines for the FT benchmark, a pentadiagonal solver

for the SP benchmark and a block-tridiagonal solver for the BT benchmark.

NPB 2 implementations do not use these because there do not exist stan-

dardized, vendor-optimized and widely available versions of the necessary

routines (unlike the BLAS routines, which are less useful for the NPB prob-

lems).

Second, most NPB codes use fully implicit algorithms on a single grid that

is distributed over several processors. Such algorithms require more com-

munication than explicit methods or hybrid methods that solve implicitly

on a single processor with explicit updates between processors. Compared

to codes using these other algorithms, the NPB suite provides a more strin-

gent test of interprocessor communication, and may show poorer scalability.

Counteracting this is the fact that the NPB 2 codes use good parallel algo-

rithms that minimize communication.

Third, NPB problems are idealized versions of real-world problems. They

aremoreregularthan typical real-worldproblems(makingloadbalancing
easier)andboundaryconditionsandphysicshavebeensomewhatsimplified.
The effectson performancearecomplicated.For instance,load-imbalance
from boundarycalculationsisprobablysmallerthan in engineeringapplica-
tions,but havingfeweroperationspergrid point per time step(becauseof
simplerphysics)givesa highercommunicationto computationratio.

For thesereasonsandothers,performanceof real-worldcodesmayor may
not besimilar to NPB performance.The main useof NPB is, instead,to
comparetheperformanceof differentcomputersonthegeneralclassof codes
representedby theNPBs.

4 Machines

The results presented in this report were collected on an IBM SP2, an Intel

Paragon, an SGI Power Challenge Array, and a Cray T3D.

4.1 NAS IBM SP2

IBM SP2 results were collected on the machine located at the Numerical

Aerodynamic Simulation (NAS) facility at NASA Ames Research Center.
This SP2 contains 160 "wide" nodes, each with a single POWER-2 processor

running at at 66.5 MHz, and with a theoretical peak performance of 266

Mflop/s. The nodes are connected by a high performance switch. All nodes

have at least 128 MB of main memory.

The key feature of wide nodes, for the purposes of this report, is that they

have (when configured with the right number of memory cards) a very wide

(256 bit) path between the processor and main memory that provides ex-
traordinary memory bandwidth (about 2 GByte/s per processor). They also

have a 256 KB primary cache with 256-byte cache lines. These figures are
twice and four times what is available on the so-called "thin-node 2" and

"thin-node", respectively.

IBM has implemented an optimized version of MPI for the SP2. The point-

to-point bandwidth of this MPI is about 35 MB/s. The latency is about 55

#S.

The following software was used for the results presented in this paper:

• AIX version 4.1.3

• POE version 2.1 (includes MPI)

• XL Fortran version 3.2

The following compiler flags were used in compiling all NPB 2 codes (all but
the last are defaults on the NAS system, but not on all SP2 systems):

• -qcache = typ e= d:level= 1:size= 256,-qarch= pw r2 -O 3

The nodes of the NAS SP2 are always dedicated to a single user process.

Many of the results were collected when other jobs were running on the

system. The only effect these jobs would have would be on placement of

processes and switch contention. Neither of these has had a noticeable

effect on system performance for the number of nodes on which we collected
results. All codes were run three times. The best times were chosen for this

report. IBM provides a "high priority" mode to run applications. This is

not turned on by default on the NAS machines, and we did not use it. It

allows the effect of competing system processes to be minimized.

4.2 NAS SGI Power challenge array

The SGI Power Challenge Array located at NAS is a cluster containing 4

Power Challenge SMP nodes, each with 8 R8000 processors running at 90

MHz. (The NAS system includes a few other nodes, but they were not used

for this report). Each processor has a peak floating point performance of

360 Mflop/s. For a few of the measurements, we moved 18 processors into a

single node and ran code on that single node. See section 6 for more details.

Each of the 4 nodes has two HIPPI connections. All HIPPI connections are

switched on a single switch.

SGI has implemented an optimized MPI for the Power Challenge Array.

Within a single node, MPI transfers are done through a single-copy mech-

anism, achieving 64 MB/s bandwidth and 18 #s latency. Between nodes,

transfers are done with a special HIPPI driver that bypasses (but coexists

with) IP traffic. MPI transfers over HIPPI achieve about 110 tts latency and

92 MB/s bandwidth. Very large data transfers are striped across multiple

HIPPI connections, giving about 160 MB/s over 2 HIPPI connections. None

of the NPB 2 implementations discussed in this paper sends messages large

10

enoughto makeuseof this feature,however.TheFT benchmark,whichis
currentlyundergoingrevision,will makeuseof it.

The_llowing so,warewasused_rthe resultspresentedin this paper:

IRIX version 6.12

MPI version 2.0

MIPSpro Fortran version 6.2

The compilerflag"-03" was used _r allcompilations.

The nodes of the NAS cluster are always devoted to a single user job, so

there is no contention for memory bandwidth with other jobs. In an SMP-

based cluster, there is considerable freedom in how to arrange processors

among nodes. Some of the competing considerations (for a fixed number of

processors to be distributed over some number of SMP nodes) are:

.

.

,

Increasing the number of processors in a node to make use of low-

latency communication within a node

Decreasing the number of processors in a node to reduce the effect of

memory contention.

Using at least 1 fewer processes than processors on a node to avoid

competition with system processes.

We have done some experimentation with different configurations. Unless

otherwise noted, most reported results are the best obtained with several

configurations. In section 6 we discuss the effects above in some detail.

4.3 Wright Laboratory Intel Paragon

Intel Paragon results were collected on the Intel Paragon located at the

ASC Major Shared Resource Center (MSRC) X/PS-25 at USAF Wright

Laboratories. It contains 368 compute nodes, 9 service nodes, and 24 multi-

purpose I/O nodes. 352 of the compute nodes have 32 MB of memory,

while 16 have 64 MB of memory. The machine has a 24-disk RAID system

attached as a Parallel File System work area, with a total available space of

22 GBytes. All results were obtained from the General Purpose (GP) nodes.

Each GP node has two i860/XP RISC processors: one processor is used for

computation, the other for communication under OSF UNIX. Theoretical

11

peak performance of the i860/XP GP node is 75 Mflop/s (double precision).

(The Multi-Purpose (MP) nodes have three i860's and two can be used for

computation under OSF UNIX.)

The nodes are connected by a network with the topology of a two-dimensional

mesh. Messages are packetized and routed using dimension-order routing.

Messages are automatically routed through intervening nodes without inter-

rupting the processor. The network has a latency of 66 #s and a bandwidth

of 70 MB/s for MPI messages.

The following software was used for the results presented in this paper:

0SF/I Release 1.0.4 Server 1.4 RI_4 with Patch RI.4.1

MPI Vl.0.12 external version - compiled with ch_nx lib

PG FORTRAN I%5.0 Patch R5.0.3

The following compiler flagswere used in compiling allof the NPB 2 codes:

-04 -Knoieee

All runs were made under the Network Queuing System (NQS) where each

node was dedicated to a singlejob with the -plk page lock fag. The only

effectother batch jobs would have would be on the physical placement of

processors and network contention.

4.4 JPL CRAY T3D

The CRAY T3D results were collected on the CRAY T3D SC256/264 at

the JPL/ESS Parallel Computing Testbed. This T3D contains 256 DEC

21064 (Alpha EV4) processors. Each processor has a peak performance of

150 Mflop/s. The combined theoretical peak speed is 38.4 Gflop/s. Each

processor has 64 MB of memory. Each processing element (PE) in the

CRAY T3D system comprises the DEC Alpha microprocessor, local memory,

and support logic. The PE is the basic computational unit in the CRAY

T3D system's multiple instruction multiple data (MIMD) architecture. A

CRAY T3D system node consists of two PEs sharing the switch and network

support logic.

The PEs are connected by a bidirectional 3-D toroidal network. The hard-

ware peak interprocessor communication rates are 300 MB/s in every di-

rection through the torus, resulting in a bisection bandwidth of up to 76.8

GB/s.

12

The version of MPI supplied by CRAY originated from the Edinburgh Par-

allel Computing Centre version 1.5a with extensions. Its latency is about

37 #s, and its bandwidth is about 28 MB/s.

The following software was used for the results presented in this paper:

UNICOS 8.0

Cray CF77_M Version 6.0.4.3

Cray GPP_M Version 6.0.4.2

Cray CFT77_M Version 6.2.1.4

(6.62)
(6.17)
(281382)

The following compiler flags were used for all NPB 2.1 codes:

-dp -Wf-oaggress -Wf-onoieeedivide -C cray-t3d

and the following load options:

-Wl-Drdahead=on -C cray-t3d

All results were obtained either interactively or with NQS batch jobs. The

nodes were dedicated to the benchmark run but there was a possibility of

network contention with processes on other nodes.

5 Code Descriptions

5.1 Application Benchmark: LU

The LU benchmark solves a finite difference discretization of the 3-D com-

pressible Navier-Stokes equations through a block-lower-triangular block-

upper-triangular approximate factorization of the original difference scheme.
The LU factored form is cast as a relaxation, and is solved by SSOR. The LU

benchmark is based on the NAS NX reference implementation from 1991,

but communication in the SSOR procedure has been considerably simplified.

The NPB 2 LU code requires a power-of-two number of processors. A 2-

D partitioning of the grid onto processors is obtained by halving the grid

repeatedly in the first two dimensions, alternating between x and y, until all

processors are assigned, resulting in vertical pencil-like grid partitions. Each

pencil can be thought of as a stack of horizontal tiles. The SSOR procedure

is implemented as a generalized pipeline. Starting with the bottommost tile

of a corner pencil, pointwise SSOR operations proceed along lines of the tile

13

in the unit-stridedirection,until all points on the tile havebeenrelaxed.
Neighboringtilesaresentupdatedvaluesalongadjacentedges,and these
pencilscannow processtheir respectivetiles, whilethe first processorcan
now processpointson the next tile above. Processingthus proceedson a
"hyperplane"of activetiles. Thepipelinespendsrelativelylittle time filling
andemptyingandis perfectlyload-balanced.Communicationrequirements
aresmallcomparedto computationexpense,makingthisparallelLU scheme
relativelyefficient.Cache line reuse in the relaxation sections is high.

5.2 Application Benchmark: SP and BT

Like LU, SP and BT use an implicit algorithm to compute a finite-difference

solution to the 3-D compressible Navier-Stokes equations.

The solution is based on a Beam-Warming approximate factorization. The

approximate factorization decouples the x, y and z dimensions, resulting in

three sets of narrow-banded, regularly structured systems of linear equations

that can be solved directly.

In SP, the flux Jacobians are fully diagonalized, and the resulting systems

are scalar pentadiagonal (reflecting the presence of fourth order artificial

dissipation) In BT, the resulting equations are block-tridiagonal (the fourth

order dissipation appears only on the right hand side, so the left hand side
difference stencil has a width of only 3), with (5 × 5) blocks. In both cases,

the systems are solved using the Thomas algorithm - Gaussian elimination

(GE), without pivoting, of a banded system. Parallelism in the solution

phase appears both in the data (solutions along parallel grid lines can be

computed independently, since they have been decoupled by approximate

factorization) and through GE pipelining.

To solve these equations, both SP and BT use the multipartition [7] method.

Each processor is assigned several non-overlapping sub-blocks (partitions) of

points. This domain decomposition provides near-perfect load balance, re-

quires only few data movements of moderate size along partition boundaries,

and has no pipeline fill delay. Tradeoffs between this and other methods are

described in [8].

Both SP and BT have two phases in each iteration. The first phase is the

computation of the right hand side, which is identical in the two codes. It

14

involvescompactlocaldifferencestencilsonly. The matrix solutionphases
proceedasdescribedabove.ThecoreoftheSPsolutionphaseis thesolution
of pentadiagonalsystemsusingGE.Thereisverylittle datareuse.Thecore
of theBT solutionphaseinvolvessolutionof (5x 5)-systemsofequationsand
multiplicationof (5× 5)matrices,bothof whichaxepart of theapplication
of GE to the block-tridiagonalsystems.Thereis significantlymoredata
reusein theseoperations.

Both the SPandBT codesrequirea squarenumberof processors because

of the decomposition requirements of the 3-D multipaxtition method. These

codes have been written so that if a given parallel platform only permits

a power-of-two number of processors to be assigned to a job, then un-

needed processors are made inactive, but are counted when determining

Mflop/s/process rates.

5.3 Kernel Benchmark: MG

The MG benchmark implements a V-cycle multigrid algorithm to solve the

scalar discrete Poisson equation. This benchmark code is based on the 1991

reference implementation written by NAS. Four critical subroutines - the

smoother, the residual calculation, the residual projection, and the trilineax

interpolation of the correction - were optimized for both vector and RISC

processors. These routines represent the vast majority of the total work.

There are two different explicit smoothers used derived from trilinear finite

elements. Most of these routines work well because they use continguous

stride one memory access or, in the case of the smallest grids, the entire

array fits in cache. This code requires a power-of-two number of processors.

The partitioning of the grid onto processors occurs such that the grid is

successively halved, starting with the z dimension, then the y dimension

and then the x dimension, and repeating until all processors are assigned.

The MG benchmark pushes residuals and pulls solutions from dense to

coarser grids and thus has short messages of different lengths based on the

grid sizes.

6 Results

NPB 2 data can be used to examine a number of performance issues. In this

report, we highlight a few of the more interesting results, using a single rep-

15

resentative sample from a large number that could have been used. Detailed

,graphs of all NPB 2 results are available at http://www.nas.nasa.gov/NAS/NPB/NPB2Results/.

6.1 Performance per processor

03
O_

0

R
r_

o

7O

60

50

4O

3O

2O

10

o

Performance (per node) of BT class A

..... IBM SP2 '---_---
Cray T3D ----_....

SGt R8000 Array _,....
,-.._._._. Intel Paragone........

.......................... t[............... t1""'"

D ¸ • - • 6 ¸¸ ..-_1 D.-D

I I I I I I I

2 4 8 16 32 64 128 256
Number of processors

0_

z
¢oo0
o_<
_z
,,-->

_o
_¢:?.

q) o_

n-oi
cu_

Z

:=::
t-

Figure h Per-processor Performance

Figure 1 shows the per-processor performance of BT class A on all ma-

chines. It shows a large disparity in per-processor performance between

the four machines. The SP2 is the clear leader, obtaining as many as 65

Mflop/s/processor (but as few as 40 Mflop/s/processor on 100 nodes)• The

Power Challenge Array is a distant second with about 35 Mflop/s/processor.

The T3D is substantially below that at about 10 Mflop/s/processor, and

the Paragon registers barely more than 5 Mflop/s/processor. This ranking

is consistent across all benchmarks•

The maximum Mflop/s/processor values obtained on each machine are:

SP2 :

PC Array :

85 Mflop/s/process on NG class B i processor

46 Mflop/s/process on NG class B I processor

16

Paragon:
T3D:

8 Mflop/s/process on MG class B 64 processors

24 Mflop/s/process on LU class C 128 processors

We do not have at this point an explanation for why all machines except

the T3D prefer MG.

The actual performance is not proportional to peak performance, which is:

SP2:

PC Array:

Paragon:

T3D:

266 Mflop/s/processor (66.5 MHz)

360 Mflop/s/processor (90 MHz)

75 Mflop/s/processor (50 NHz)

150 Mflop/s/processor (150 NHz)

We attribute the dominance of the SP2 to its high memory bandwidth. The

other machines have far poorer memory bandwidth relative to peak perfor-

mance. The SGI partially makes up for its poor memory bandwidth with

its very large (4MB) secondary cache. We note that as of this writing, none

of the above processors is state-of-the-art. The i860 is no longer produced,

the Alpha 21064 in the T3D has been replaced by a a faster chip, the R8000

in the SGI Array will soon be superceded by the R10000, and the Power 2

multi-chip processor is now available with a higher clock rate.

We also note that performance of the SP2 falls off rapidly with number

of processors. This is because its inter-node communication performance

is relatively poor compared to its floating point performance. Fairly level

lines for the Paragon and T3D out to 128 and 256 processors indicate good

relative network performance. For the SGI Array, the maximum number of

processors used was 32 spread over 4 nodes, so it was not possible to test

scaling properties as much as on the other machines.

The sawtooth appearance of the T3D line results from the fact that a T3D

may allocate only a power-of-two number of nodes. Thus, is is necessary to

use 256 nodes when a problem requires only 144. The NPB 2 codes calculate

per-processor performance on the basis of total allocated, not total used.

17

6.2 Total performance

O
m

10000

1000

I O0

I0

Performance (total) of LU class B

' S1_2IBM
----_ Cray T3D
.... _,.... SGI R8000 Array

......._ Intel Paragon _ ..--""

,._C.////'''x/"

f"

I I I I I ,I I

2 4 8 16 32 64 128 256
Number of processors

O.

z

_C

n-o_

z

=:;
¢-

Figure 2: Total Machine Performance

Figure 2 shows total machine performance for LU class B. The information

content is similar to that in Figure 1, except that it is easier to judge total

machine performance. Among the machines we tested, the NAS SP2 still

has the highest performance, even though it does not have as many nodes

as the T3D or Paragon that were tested.

18

6.3 Efficiency

3O

25

o_ 20
(D
¢:1,.

"6

e.-

_ 10
u.i

Efficiency (% of peak performance) of MG class A

' ' ' IBM SP2 '-_

Cray T3D ----x
SGI R8000 Array _,....

Intel Paragon_

"-.E)

""-.. [3-XE]

I I I I I I I

2 4 8 16 32 64 128 256
Number of processors

12.

rc_
oJ_

z

H
¢.-

Figure 3: Machine Efficiency

Figure 3 shows the machine efficiency on MG class A. Efficiency is total

Mflop/s divided by the peak Mflop/s, expressed as a percentage. The most

interesting point of this graph is that it shows that the SP2 obtains its high

performance not through high peak performance, but by attaining a rela-

tively large fraction of peak performance - as much as 24of peak performance.

This result emphasizes the inappropriateness of relying on peak performance

to judge the capabilities of RISC-based machines. Though they are not rep-

resented here, vector machines typically attain a much higher percentage of

peak performance on appropriate, well-written codes.

19

6.4 Performance as a function of problem size

25

20

(D
15

0

2

o 10

Performance (per node) of Cray T3D on LU
i i

.-_=._. LU c ass A
................. LU class B ----_

Ix× LU class C _

...... x-. '..

"--_-->(.... "N(

I I

0 1O0 200 300
Number of processors

(3.

z

t-

Figure 4: Performance of three classes of LU on the T3D

Figure 4 shows the performance of LU class A, B and C on the T3D. The

largest size, class C, clearly performs the best on any given number of proces-

sors. We attribute this largely to the fact that the computation to commu-

nication ratio is highest, due to the best surface-to-volume ratio. A detailed

analysis shows that this is not the only factor at work, as it does not exactly

predict performance.

2O

6.5 Differences in performance of different codes

8O

7O

6O

5O
(l)
fJ

Q. 40

0
_- 30

2O

10

0

Performance (per node) of IBM SP2 on class A
i i

BT class A --
SP class A
LU class A },....

_}o MG classA • e
'..

". ''B.

- '''"_---. E3

,("'".--....

"X -}i.... ""O

I I

CO

O.

Z

rr_

z

e-"

0 50 100 150
Number of processors

Figure 5: Performance of all Class A codes on the SP2

Not all NPB codes perform equally well. For instance, Figure 5 shows the

performance of all class A codes on the SP2. MG, LU and BT have approx-

imately the same performance, in Mflop/s, but SP exhibits substantially

lower performance in Mflop/s/processor.

21

6.6 Comparison of NPB 2 and NPB 1 performance

It can be insightful to compare NPB 2 and NPB 1 results. While NPB 2

results can be reported in Mflop/s/processor, NPB 1 implementations may

have different operation counts. Instead of Mflop/s/processor, we plot a the

ratio of NPB 2 run time to the NPB 1 run time.

Because NPB 1 and NPB 2 data are not always available on the same num-

bers of processors, we calculate a ratio based on a fit of Amdahl's law to the

NPB 2 results.

2.5

2 :

Z_ 1,5

2 I

]5

05

:ratio of NPB 2 to NPB 1 runtirng of = B on IBM SP2
6

; i i

_ - [¢

..................El................E]E}......................._] 3

_ BT | ,
-- -_-- LU

p_m B m_

MGI I I 0
B

16 32 64 128

183

z

]5 o.,
N _ 0.4

:_ 0.2

o

Number o_ processors

Ratio o_NPB 2 to NPB 1 runtlme o4cl_s B on Cray "1"30

3sI

2:_.....:.._B............e:::::__::'_:':-'*-
1 5 . .._"'"

I ,

BT

05 ---)<-- SP
--_-- LU
....•El--,MG

I I I i I

016 32 64 128 256 512 1024
Number of processors

Rat0o od NPB 2 to NPB 1 rur,_no o_clau B oft SGI RSOOO Am

J i i

E..)¢._.

.................. {:3 O{3

BT

- -)<-- SP
--_-- LU
....O'- MG

I I I

2 4 B 16
Number of ptocee.lonl

Rlltio of NPB 2 Io NPB 1 run_e of class B on Illel Psrlgon

2 ! i

....... -4(-___ ____X. -->(--)(- _.._.__)q

BT
- -)<-- SP

_ --_-- LU
I No NPBI data ivlilad>le f_ MG clsu B
[I I

128 256

Nurni0_ o_ pmc_m_m

512

z!

Figure 6: Ratio of NPB 2 to NPB 1 run time

Figure 6 shows the NPB 2 to NPB 1 run time ratio for all benchmarks on

each machine. Higher numbers mean that NPB 1 performs better relative to

NPB 2. Positive slopes show NPB 1 scaling better, and negative slopes show

NPB 2 scaling better. Taking NPB 1 performance as the "peak achievable"

performance, and NPB 2 performance as "normal" performance without a
lot or architecture-specific tuning, we can make a statement about how much

architecture-specific tuning is necessary to obtain high performance on each

22

machine.

The Paragonhasthe smallestratiosbetweenNPB 2 and NPB 1 perfor-
mance. For the SP2the ratio is usuallybetween1 and 2. For the T3D,
NPB 2performsrelativelyworse,between1.5and3 timesslower.The SGI
Array resultsshowthe worstrelativeperformanceonNPB 2.

Takingthis informationtogetherwith theper-processorperformanceresults,
weconcludethefollowing.TheSP2designmakesit relativelyeasyto obtain
a high percentageof peakperformance.On the T3D and SGI it is much
harderto achievegoodperformance,but carefularchitecture-specifictuning
can improvethe situation considerably.Architecture-specifictuning may
buy youmoreonthe SGIthanontheT3D. Finally,theParagoni860nodes
arerelativelyinsensitiveto tuning.

23

6.7 Discussion of clustered-SMP issues

The architecture of the SGI Power Challenge Array is quite different from

the other machines that were tested, in that it is based on SMP nodes, rather

than single processor nodes. In this respect, it is similar to many currently

planned products from other companies.

In the earlier days of parallel computing, network topology could be quite

important. For instance, communication patterns on a hypercube-based

computer such as the Intel iPSC/860 had to take into account the topology of

the network. On later machines, such as the SP2, the T3D and the Paragon,

network topology effects still exist, but are usually much less important.

They can often be considered "topology free", especially when there is an

intelligent scheduler.

The Power Challenge Array may represent the first in a new generation of

parallel computers and a return to the days when it mattered where pro-

cesses were placed. There is non-uniformity both in the "network" (shared-

memory communication has lower latency, lower point-to-point bandwidth,

and higher aggregate bandwidth than inter-node communication) and the

processors (two processes on the same SMP node may share a memory bus,

competing for memory bandwidth, or may be on different nodes, with no

competition for bandwidth). These two factors affect the configuration (op-

timal number of processors per node) and placement of processes on a set

of nodes.

We note that a solely message-passing based code may not be the most

efficient type of code on an SMP-based cluster. Indeed, it may be beneficial

to use compiler-exploited parallelism within a node and MPI between nodes.

While this may turn out to be an efficient model, it is not yet clear that it

will be generally useful. For instance, compiler directives are not portable,

and requiring the programmer to find two different types of parallelism may

be unrealistic. There may be other reasons why such a program designed

for such a system may not run well on a fully distributed system.

We obtained Array results for as many different configurations as were fea-

sible. For instance, 16-process results were obtained for 16 processes on a

single node, 8 processes on each of 2 nodes, and 4 processes on each of 4

nodes. The resulting data reflect a competition between reduced memory

24

contentionwhenspreadingprocessesamongnodesandreducedcommuni-
cationperformancebetweennodes.

Someof the resultsof this experimentaresummarizedin table one. It
is immediatelyevidentthat memorycontentionbecomesan issueevenat
very small numbersof processors.For instance,onecan usuallyobtain
substantiallybetterperformancefor an16-processjob byplacing8processes
oneachof 2 nodesthanby placingall 16processesona single16-processor
node.2

Table1: Table1. Mflop/s/processfor differentconfigurations
bt.A bt.B lu.A lu.B mg.A mg.B sp.A sp.B

16procsx 1node 18.5 13.8 39.7 29.0 17.8 19.2 27.7 14.2
8 procsx 2 nodes 32.1 26.9 33.9 34.1 29.6 31.9 35.6 26.5
4 procsx 4 nodes 36.2 31.2 37.8 36.7 38.2 39.9 37.4 N/A

7 Analysis/Conclusions

In this paper we have presented what we consider baseline NPB 2 results.

All machines for which we have reported results have been or will soon be

displaced by faster successors. We intend to track the performance of newer

machines and report their performance in the same manner. It will also be

interesting to see how much performance increase can be obtained at the 5%

modification level allowed by the NPB 2 rules. It remains to be seen whether

small changes to these portable codes can significantly increase performance.

Vendors and others are encouraged to submit results.

The results shown here confirm several facts that are well known in the

high-performance computing community: that actual performance on RISC

processors is often around 10% of peak performance; that SP2 processors

perform best and Paragon i860 processors (which are much older) perform

worst; that careful architecture-specific tuning can improve performance sig-

nificantly; that the SP2 has a relatively underpowered network.

2Note: 16 process cases run on 18-processor node
2x8 process cases run on 2 8-processor nodes
4x4 process cases run on 4 4-processor nodes

25

Wehavealsoshownthat the NPB2 suitecanbeusedto makecarefulmea-
surementsof a singlemachine.In additionto the SMPclusterconfiguration
analysisdiscussedin section6, NAS hasbeenusingthe NPB 2 suite for
regressiontestsand the analysisof the effectof newsystemsoftwareon
applicationperformance.

By the end of 1996,we expectto releasea completeset of NPB codes
(including IS, CG, EP and a rewritten FT) as well as resultsfor those
codes.

Acknowledgment

The NAS parallel systems group was extremely helpful in many stages of

collecting the NPB 2 results. Lou, Archie, James and Mary often went out of

their way and beyond the call of duty to help out when there were problems

or special requests. Memories of specific instances have faded, but to take a

recent example, the other week Lou swapped a bunch of boards in davinci

so that we could obtain the 16-processor 1-node results.

We would also like to thank Barbara Horner-Miller for providing access

to the JPL CRI T3D machine and allowing us to greatly exceed our CPU

quota.
We would also like to thank Kueichien Hill and Robert Pollick for allow-

ing us the use of the Wright Laboratory Paragon.

26

References

[1] Bailey, D. H.; Barszcz, E.; Barton, J. T.; Browning, D. S.; Carter, R.

L.; Dagum, L.; Fatoohi, R. A.; Frederickson, P. O.; Lasinski, T. A.;

Schreiber, R. S.; Simon, H. D.; Venkatakrishnam, V.; and Weeratunga,

S. K.: The NAS Parallel Benchmarks, International Journal of Super-

computer Applications, Vol. 5, No. 3, (Fall 1991), pp. 63-73.

[2] Bailey, D. H.; Barton, J.T.; Lasinski, T. A.; and Simon, H. D.,

eds: "The NAS Parallel Benchmarks," NASA Technical Memorandum

103863, NASA Ames Research Center, Moffett Field, CA, 94035-1000,

July 1993 http://www.nas.nasa.gov/NAS/NPB/.

[3] Bailey, D. H.; Harris, T.; Saphir, W.; van der Wijngaaxt, R.; Woo, A.;

and Yarrow, M., "The NAS Parallel Benchmarks 2.0,"NASA Technical

Report NAS-95-020, NASA Ames Research Center, Moffett Field, CA,

94035-1000, December 1995 http://www.nas.nasa.gov/NAS/NPB/.

[4] Bailey, D. H.; and Saini, S., "The NAS Parallel Benchmarks

Results 12-95,"NASA Technical Report NAS-95-021, NASA Ames

Research Center, Moffett Field, CA, 94035-1000, December 1995

http: / /www.nas.nasa.gov /NAS /NPB /.

[5] Message Passing Interface Forum: MPI: A Message---Passing Interface

Standard, Version 1.1, July, 1995, http://www.mcs.anl.gov/mpi/mpi-

report- 1.1/mpi-report.html.

[6] Dongarra, J. J.: The LINPACK Benchmark: An Explanation. Super-

Computing, Spring 1988, pp. 10-14.

[7] Bruno, J; Cappello, P.R.: Implementing the Beam and Warming

Method on the Hypercube. Proceedings of the 3ed conference on Hy-

percube Concurrent Computers and Applications, Pasadena, CA, Jan

19-20, 1988

[8] R.F. Van der Wijngaart, Efficient implementation of a 3-dimensional

ADI method on the iPSC/860, Supercomputing '93, Portland, OR,

November 15-19, 1993

27

NAS

Author(s): William Saphir, Alex Woo,
Maurice Yarrow

Reviewers:
"I have carefully and thoroughly reviewed
this technical report. I have worked with the
author(s) to ensure clarity of presentation and
technical accuracy. I take personal responsi-
bility for the quality of this document."

Signed: _ _' _f_}4;_

Name: Subhash Saini

Name: Steve Barnard

Chief:

Approved: _.

Date:.

8/16/96
NAS ReportNumber:

